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Abstract: The discrete Fourier transform (DFT) is of fundamental interest in photonic quantum
information, yet the ability to scale it to high dimensions depends heavily on the physical
encoding, with practical recipes lacking in emerging platforms such as frequency bins. In this
article, we show that d-point frequency-bin DFTs can be realized with a fixed three-component
quantum frequency processor (QFP), simply by adding to the electro-optic modulation signals
one radio-frequency harmonic per each incremental increase in d. We verify gate fidelity
FW>0.9997 and success probability PW>0.965 up to d = 10 in numerical simulations, and
experimentally implement the solution for d = 3, utilizing measurements with parallel DFTs to
quantify entanglement and perform tomography of multiple two-photon frequency-bin states.
Our results furnish new opportunities for high-dimensional frequency-bin protocols in quantum
communications and networking.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The existence of incompatible observables in quantum theory represents one of the central
departures of quantum from classical mechanics, underpinning the Heisenberg uncertainty
principle and precluding the actualization of quantum states with, e.g., arbitrarily well-defined
position and momentum. In finite-dimensional Hilbert spaces, incompatibility appears in the form
of mutually unbiased bases (MUBs) [1,2]. Consider two orthonormal d-dimensional bases {|αm⟩}
and {|βm⟩}; they comprise a pair of MUBs if and only if they satisfy |⟨αm |βm′⟩|2 = 1

d for all
m, m′ ∈ {0, 1, . . . , d− 1}, which implies that measurements in the α-basis provide no information
about the results of measurements in β, and vice versa. MUBs are optimal measurements for
tomography of noisy quantum states [1,3], expose tampering from eavesdroppers in quantum key
distribution (QKD) [4–6], and provide efficient entanglement witnesses [7,8]. One archetypal
pair of MUBs are the logical and discrete Fourier transform (DFT) bases: {|m⟩} and {|fm⟩},
where |fm⟩ = 1√

d

∑︁d−1
n=0 e−2πimn/d |n⟩. Measurements with both have been utilized extensively

in a variety of photonic quantum information experiments. In time-bin encoding, the DFT
has been realized with nested delay interferometers, supporting optical frequency division
multiplexing [9,10], high-dimensional QKD [11,12], and quantum state tomography [13,14].
In path encoding, DFT operations have been used for on-chip state characterization [15] and
multiphoton quantum interference [16,17], and are core elements in a recent proposal to generate
Greenberger—Horne—Zeilinger (GHZ) states [18]. And in orbital angular momentum (OAM),
spatial light modulators have enabled measurements in DFT bases for tomography [19] and
entanglement certification [20,21].

In frequency-bin encoding, the quantum frequency processor (QFP)—a concatenation of alter-
nating electro-optic phase modulators (EOMs) and pulse shapers [22]—has enabled experimental
demonstration of DFT gates up to d = 3, using a three-element QFP (two EOMs and one pulse
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shaper) [23]. But although theoretical and numerical results [22,24] indicate the QFP’s potential
to reach even higher-dimensional DFTs with additional elements, it is unclear whether more
efficient DFT constructions are possible with smaller systems, a question of practical importance
toward high-dimensional quantum communications and networking protocols.

In this work, we address this question directly and develop explicit designs for efficient
frequency-bin DFTs. We find that a fixed-length three-component QFP is sufficient to reach DFT
gate performance with fidelity FW>0.9997 and success probability PW>0.965 for all dimensions
examined (d ≤ 10). The only requirement as d increases is the addition of one radio-frequency
(RF) harmonic per dimension increment in the EOM drive functions, so that d − 1 total RF tones
enable the d-point DFT with high FW and PW . As examples of these designs, we experimentally
implement parallel d = 3 DFTs on multiple frequency-bin entangled states, using the measurement
results to perform state tomography and quantify entanglement through Bayesian inference. Our
results provide a scalable recipe for the construction of high-d frequency-bin DFTs, useful for
basic communication tasks in this degree of freedom and particularly well suited to tight bin
spacings envisioned in future integrated devices.

2. DFT gate designs

Figure 1 highlights an example scenario leveraging QFP-based DFT operations. A high-
dimensional frequency-bin entangled state—produced, e.g., by pumping a microring resonator
(MRR) or a periodically poled lithium niobate (PPLN) waveguide—is split and transmitted to
two users, each of whom possess a QFP, wavelength-selective switch (WSS) and superconducting
nanowire detectors (SNSPDs). By synthesizing either the identity (EOMs off) or complete DFT
on the QFP, measurements of the received photon can be performed in either the logical or
Fourier bases, respectively. The upper-left inset shows temporal modulation patterns and pulse
shaper phases that enable a high-fidelity (d = 10)-dimensional DFT; if the original biphoton state
is maximally entangled, then joint measurement outcomes will be perfectly correlated in matched
bases, as exhibited in the upper-right inset for the case of an input state with uniform phase, i.e.,
|ψ⟩ = 1√

d

∑︁d−1
k=0 |k, d − 1 − k⟩IS, and DFT operations defined according to an increasing-frequency

logical basis convention for both photons (see mode definitions in Fig. 1). Correlations in such
complementary bases can then be used for entanglement verification or d-dimensional two-basis
QKD [6].

Mathematically speaking, in terms of logical and DFT basis states, we can define the DFT
such that it maps |fm⟩ inputs to |m⟩ outputs, which can be written in terms of the input (output)
annihilation operators âm (b̂m) as a matrix b̂m =

∑︁d−1
n=0(Fd)mnân =

1√
d

∑︁d−1
n=0 e2πimn/dân, where the

operators apply to discrete frequency bins centered at ωn = ω0 + n∆ω. We note that multiple
conventions for the forward Fd and inverse F†

d are possible, depending on the phase in the exponent
(±i) and the physical mapping to frequency bins (i.e., ωn defined increasing or decreasing with
n). Such conventions have no impact on the general behavior of the DFT, yet must be properly
accounted for in making quantitative predictions of quantum state measurements. We focus on
synthesizing these gates on a three-component QFP, which collectively implements the modal
transformation W with elements

Wmn =

∞∑︂
k=−∞

dm−keiφk ck−n, (1)

where m, n ∈ {0, . . . , d − 1}. The cn (dn) coefficients are defined in the Fourier series expansion
of the phase modulation transformation of the first (second) EOM in the QFP, i.e.,

cn =
∆ω

2π

∫
2π
∆ω

dt eiA(t)+in∆ωt ; dn =
∆ω

2π

∫
2π
∆ω

dt eiB(t)+in∆ωt (2)
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Fig. 1. Representative application for the frequency-bin DFT. Entangled photons are
generated and sent to different users, each of whom uses a QFP to apply either the identity
or d-dimensional DFT prior to frequency-resolved detection. Insets show simulation results
for the ten-dimensional case: optimal DFT modulation patterns (upper left) and spectral
correlations for an ideal maximally entangled input (upper right). See text for details.

which assumes periodicity at the bin spacing and integration over one full period. We further
decompose A(t) and B(t)—the time-dependent phases applied by the respective two phase
modulators within a single QFP—as Fourier series themselves: A(t) = ∑︁P

p=1 Ap cos(p∆ωt + γp)
and B(t) = ∑︁P

p=1 Bp cos(p∆ωt + δp), where P is a specified integer cutoff. The complete mapping
W can then be compared to the ideal DFT Fd through modal fidelity and success probability:

FW =

|︁|︁Tr W†Fd
|︁|︁2

d2PW
; PW =

Tr W†W
d

. (3)

We truncate the formal infinite-dimensional space of Eq. (1) to M = 64 modes for numerical
simulation, which we have found sufficiently large to eliminate spurious edge effects. Of these
M modes, only B are phase-shifted by the pulse shaper (the remaining M − B are passed with
zero applied phase), leaving a total of B + 4P independent parameters to optimize: B pulse
shaper phases ϕk, and amplitude and phase for each harmonic of each EOM. Using particle
swarm optimization [25], we find the parameter settings which minimize the cost function
C = PW log10(1 − FW ) as a convenient means to optimize both FW and PW while penalizing
the former more strongly [26]. We repeat such optimization tasks for B ∈ {4, 8, . . . , 52} to
investigate the required number of pulse shaper channels as well.

As observed in Ref. [23], a lone single-pass EOM cannot mix d frequency bins equally without
at least d−1

2d−1 of the input energy scattering into modes outside of the d-dimensional subspace.
However, by cascading multiple EOMs separated by pulse shapers—the QFP—this scattering can
be compensated and high-probability, high-fidelity mixing is possible. In the first QFP realization
of the d = 2 (d = 3) DFT, a solution with fidelity FW = 0.9999 (FW = 0.9999) and success
probability PW = 0.9760 (PW = 0.9733) was demonstrated [23]. Interestingly, while the d = 2
case utilized single-frequency sinewave modulation, the d = 3 solution required modulation
containing both the first and second harmonic. To see if this “add-RF-harmonic” rule represents a
trend for DFT gates, here we perform additional design simulations to synthesize d-dimensional
DFT gates on a three-element QFP, in which we consider d − 1 RF tones in the optimization
procedure. The resulting fidelities and success probabilities for d ≤ 10 and channel numbers B
appear in Fig. 2. For all d, solutions with FW>0.9997 and PW>0.965 are possible with these
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resources. To place these fidelities in context, the average error probability for measurements of
input states |fm⟩ is less than 0.02% for all solutions here, well below the asymptotic bounds for
two-basis QKD protocols: e.g., ≥15.95% for d ≥ 3 [6].

Fig. 2. DFT solutions for a three-element QFP, where d − 1 RF harmonics are available for
each dimension d. The vertical arrows mark the bandwidth required to reach the final cost
function value, up to three significant digits; the fidelity and success probability (FW ,PW )
at these points are provided above each plot.

While the number of elements required for these results is constant (fixed at three), the effective
number of modes utilized does increase with d, as expressed by the vertical lines in Fig. 2, which
mark where the third significant digit of the cost PW log10(1 − FW ) has converged to its limiting
value, specifically at B = 12 (d = 3), 16 (d = 4), 20 (d = 5), 24 (d = 6), 28 (d = 7), 32 (d = 8),
32 (d = 9), and 36 (d = 10). The ordered pair (FW ,PW ) above each plot shows the specific
fidelity and success probability for the solution at this value of B, which we hereafter refer to as
“minimum bandwidth” DFT solutions. The solution we found here for d = 3—albeit using a
different cost function—is similar to the one we found in Ref. [23], with both the fidelity FW and
success probability PW remaining the same to four significant digits. This bandwidth scaling
with dimension is consistent with previous observations of a tradeoff between QFP depth and
optical bandwidth [22]. From a practical side, accessing additional bandwidth is frequently
preferred to adding components—in terms of cost and loss—so that this fixed-depth DFT design
procedure appears quite useful. Incidentally, it also seems that the “d − 1 RF tone” rule is unique
and well defined: for all simulations we have completed, access to either fewer or more RF
harmonics leads, respectively, to noticeable reductions or negligible improvements in DFT gate
performance.

Assuming that these observations persist to higher d, the total number of adjustable parameters
required for the frequency-bin DFT seems to scale like ∼8d: spectral phases for B ∼ 4d modes
combined with 4(d − 1) RF amplitudes and phases (accounting for each tone on each EOM).
Such O(d) scaling is slightly better than the O(d log2 d) scaling for the number of beamsplitters
for path-encoded DFT designs [27] but less efficient than recently discovered OAM DFTs based
on O(

√
d log2 d) beamsplitters [28]. Accordingly, the required free parameters in our solutions

do appear reasonable in view of previous work in other degrees of freedom.
Figure 3 plots the specific EOM modulation patterns A(t) and B(t), resulting Fourier series

coefficients cn and dn [Eq. (2)], and pulse shaper phases ϕk [Eq. (1)] for the minimum bandwidth
solutions designated by arrows in Fig. 2. The pulse shaper phase shifts display no obvious trends
in their spectrum as d increases. In contrast, the temporal phases on the EOMs possess a clear
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single-peak structure that becomes sharper and grows in amplitude with d, coupling successively
more frequency bins as evidenced by the wider spread in Fourier series coefficients in Fig. 3(b).
Moreover, the second EOM pattern is the time-reversed version of the first [B(t) = A(−t)] for all d,
which is especially interesting in that these modulation functions do not cancel each other out for
the case of zero applied pulse shaper phase (ϕk = 0): B(t) = A(−t) leads to the relation dn = c−n
(|dn | = |cn | and arg dn = arg c−n), rather than dn = c∗−n (|dn | = |cn | and arg dn = − arg c−n) as
required for total cancellation. Our attempts to understand this behavior intuitively have proven
unsuccessful, although we suspect a useful explanation should be possible. Nevertheless, the
practical value of these recipes for frequency-bin DFTs remains clear, particularly toward on-chip
integration where tighter mode spacings could make the synthesis of high-order RF harmonics
more manageable.

Fig. 3. Full QFP solutions for the 𝑑-point DFT gates with bandwidths indicated by the
arrows in Fig. 2. (a) Phase modulation patterns 𝐴(𝑡) and 𝐵(𝑡) for the first and second
EOM, respectively, plotted over a single temporal period 𝑇 = 2𝜋/Δ𝜔. (b) Amplitude
(stem plots, left axis) and phase (scatter plots, right axis) of the corresponding Fourier
series coefficients 𝑐𝑛 and 𝑑𝑛 from Eq. (2). Since |𝑐𝑛 | = |𝑑𝑛 |, only one stem plot per
dimension is required. (c) Phase 𝜙𝑘 applied to each frequency bin by the central pulse
shaper, where gray shading encloses the computational space from bin 0 to 𝑑 − 1.

solutions designated by arrows in Fig. 2. The pulse shaper phase shifts display no obvious trends
in their spectrum as 𝑑 increases. In contrast, the temporal phases on the EOMs possess a clear
single-peak structure that becomes sharper and grows in amplitude with 𝑑, coupling successively
more frequency bins as evidenced by the wider spread in Fourier series coefficients in Fig. 3(b).
Moreover, the second EOM pattern is the time-reversed version of the first [𝐵(𝑡) = 𝐴(−𝑡)]
for all 𝑑, which is especially interesting in that these modulation functions do not cancel each
other out for the case of zero applied pulse shaper phase (𝜙𝑘 = 0): 𝐵(𝑡) = 𝐴(−𝑡) leads to
the relation 𝑑𝑛 = 𝑐−𝑛 (|𝑑𝑛 | = |𝑐𝑛 | and arg 𝑑𝑛 = arg 𝑐−𝑛), rather than 𝑑𝑛 = 𝑐∗−𝑛 (|𝑑𝑛 | = |𝑐𝑛 |
and arg 𝑑𝑛 = − arg 𝑐−𝑛) as required for total cancellation. Our attempts to understand this
behavior intuitively have proven unsuccessful, although we suspect a useful explanation should be
possible. Nevertheless, the practical value of these recipes for frequency-bin DFTs remains clear,
particularly toward on-chip integration where tighter mode spacings could make the synthesis of
high-order RF harmonics more manageable.

3. Experiment

As an application of the DFT for state characterization, we experimentally implement the 𝑑 = 3
solution and apply it to a biphoton frequency comb (BFC). While parallel 𝑑 = 2 DFTs have been
realized [29], as well as a single-photon 𝑑 = 3 DFT [23], this is the first example combining
the two: i.e., parallel frequency-bin DFTs on frequency-bin qutrits. Our experimental design
for 𝑑 = 3 resembles the scheme discussed in Fig. 1, where we enlist the PPLN biphoton source
and use a pulse shaper to carve a total of three pairs of frequency-correlated, 20 GHz-spaced,
∼10 GHz-wide bins; the bin spacing Δ𝜔/2𝜋 = 20 GHz facilitates line-by-line shaping, and
RF tones at 20 and 40 GHz are required at each of the QFP’s two EOMs. As experimental
simplifications due to available equipment, the signal and idler photons are transmitted in the

Fig. 3. Full QFP solutions for the d-point DFT gates with bandwidths indicated by the
arrows in Fig. 2. (a) Phase modulation patterns A(t) and B(t) for the first and second EOM,
respectively, plotted over a single temporal period T = 2π/∆ω. (b) Amplitude (stem plots,
left axis) and phase (scatter plots, right axis) of the corresponding Fourier series coefficients
cn and dn from Eq. (2). Since |cn | = |dn |, only one stem plot per dimension is required.
(c) Phase ϕk applied to each frequency bin by the central pulse shaper, where gray shading
encloses the computational space from bin 0 to d − 1.

3. Experiment

As an application of the DFT for state characterization, we experimentally implement the d = 3
solution and apply it to a biphoton frequency comb (BFC). While parallel d = 2 DFTs have been
realized [29], as well as a single-photon d = 3 DFT [23], this is the first example combining the
two: i.e., parallel frequency-bin DFTs on frequency-bin qutrits. Our experimental design for
d = 3 resembles the scheme discussed in Fig. 1, where we enlist the PPLN biphoton source and
use a pulse shaper to carve a total of three pairs of frequency-correlated, 20 GHz-spaced, ∼10
GHz-wide bins; the bin spacing ∆ω/2π = 20 GHz facilitates line-by-line shaping, and RF tones
at 20 and 40 GHz are required at each of the QFP’s two EOMs. As experimental simplifications
due to available equipment, the signal and idler photons are transmitted in the same optical fiber
and then modulated by a single QFP programmed with two parallel DFT gates (separated by a
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200 GHz guardband), and coincidences are registered by raster scanning signal and idler WSS
filters so that only two SNSPDs are required (rather than the ideal of 2d = 6).

A logical basis measurement (EOMs off) of our 3 × 3 BFC appears in Fig. 4(a). If we define
the biphoton state |ϕ⟩ ∝ |02⟩IS + eiφ |11⟩IS + e2iφ |20⟩IS, then the state carved by the front-end
pulse shaper (with flat spectral phase) is ideally |ϕ = 0⟩. By also enlisting the pulse shaper to
apply a phase of ϕ to signal bin n = 1 and 2ϕ to bin n = 0, any |ϕ⟩ can be prepared as input into
the QFP. The measured output coincidences for ϕ ∈ {0, 2π/3, 4π/3} after parallel DFTs follow
in Fig. 4(b–d): as expected, the results are strongly correlated, with each setting of ϕ determining
which three pairs of frequency bins are populated. Despite the small number of measurements
considered, the observed correlations are sufficient for meaningful inference of the underlying
states. Since the prepared states differ only in phase, we can take the logical basis results in (a) as
applying to any of the three ϕ cases, giving us two sets of nine-outcome measurements for each
ϕ value, 1(I) ⊗ 1

(S) and F(I)
3 ⊗ F(S)

3 .

Fig. 4. Spectrally resolved coincidences after parallel QFP operations. Results correspond
to measurements in the logical (a) and DFT bases (b–d) . The latter vary with the phase of
the prepared input superposition state |ϕ⟩.

One useful metric for a bipartite state is the distillable entanglement ED [30]. While
extremely difficult to determine directly, bounds can be obtained from computable quantities.
For example, a lower bound can be established from conditional entropies [8], namely: ED ≥
log2 3 − H(1(I) |1(S)) − H(F(I)

3 |F(S)
3 ). Following previous work [29], we can estimate these

entropies directly from the raw counts in Fig. 4, by positing some unknown nine-element
probability distribution p = (p00, p01, . . . , p22) for each panel and sampling the Bayesian posterior
distribution formed by a flat Dirichlet prior on p and a multinomial likelihood for the observed
counts. Doing so, we obtain the min ED values in Table 1.

In addition, ED can be upper bounded by the log-negativity EN [31], which requires the full
density matrix for computation. Utilizing Bayesian quantum state tomography [32,33], which
returns uncertainties commensurate with the data gathered, we can indeed estimate the full
quantum state with these results, irrespective of their informational completeness. Applying the
specific Bayesian workflow described in Ref. [34]—which employs a Bures prior distribution and
accounts for raster scanning and PW<1 through a Poissonian likelihood—we find the fidelities
for each state as shown in Table 1, defined as Fρ = ⟨ϕ|ρ|ϕ⟩. Since the outcomes are strongly
correlated, the inferred states have relatively small uncertainty, even with measurements in two
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Table 1. Bayesian inference of Fig. 4 data:
distillable entanglement bound min ED , fidelity

Fρ , and log-negativity EN .

φ min ED [ebits] Fρ EN [ebits]

0 0.41 ± 0.09 0.80 ± 0.02 1.30 ± 0.03

2π/3 0.41 ± 0.09 0.80 ± 0.02 1.30 ± 0.04

4π/3 0.36 ± 0.09 0.78 ± 0.02 1.28 ± 0.04

bases only. Computing log-negativity EN , we obtain a complete interval for ED of approximately
ED ∈ [0.4, 1.3] ebits for the states considered. This range is quite wide; we suspect that the
much higher values for EN result from the fact it applies quantum state constraints, in contrast to
the entropic bound which treats the measurement results as raw probabilities. In other words,
quantum state tomography is based on the assumption of a single ground truth state behind all
measurement sets involved, as well as a physical model (Born’s rule) connecting this state to the
observed outcomes, whereas our entropic calculation views the detection scenarios as isolated
probability distributions with no direct connection to quantum measurement theory. It would
be interesting to explore how the ED range may narrow with higher-fidelity results, which are
limited here primarily by the resolution of the state preparation and measurement pulse shapers.

Finally, as an aside, we note that one can alternatively view the ϕ and 2ϕ phase shifts imparted
by the front-end pulse shaper as part of the measurement process, rather than state preparation,
and pool all results of Fig. 4 into a single likelihood to estimate the state before the pulse shaper
(ideally |ϕ = 0⟩). Doing so, we find Fρ = 0.81 ± 0.02 and EN = 1.32 ± 0.03, comparable to the
values in Table 1, albeit with a slight increase in entanglement possibly resulting from access to
correlations in four—rather than just two—bases in the inference process; nonetheless, since
these four bases collectively are not mutually unbiased, the information gained per measurement
is nonoptimal [1].

4. Discussion

The frequency-bin DFT designs introduced and analyzed here reveal intriguing opportunities
for quantum information processing tasks in frequency encoding, including QKD. Indeed, the
high success probabilities of our DFT solutions actually address a challenge shared by time-bin
DFT measurements as well: the satellite pulses produced by passive delay interferometers lead
to an effective measurement probability of 1/d [11,12]. The frequency-bin DFTs here with
near-unity success thus render our design similar in spirit to more complex active time-bin
interferometers [35–37] that can in principle reach unit DFT measurement efficiency. As another
application, aligned with the original motivation for the QFP [22], our DFT is precisely the
operation required for a quantum interconnect of frequency-disparate matter qubits. Consider d
qubits, each in a tuned lambda energy scheme, such that pump-induced excitation from the ground
to excited state is accompanied by a emission of a single photon at frequency ωn = ω0 + n∆ω—a
distinct value for each qubit n. By coupling these photonic modes into a single bus waveguide
terminated in a d-point DFT, detection of a single photon in output frequency mode m will
herald generation of the W-like entangled matter state |ψm⟩ = 1√

d

∑︁d−1
n=0 e2πimn/d |0 · · · 01n0 · · · 0⟩,

a spectral version of the Duan–Lukin–Cirac–Kimble (DLCZ) interconnect [38] generalized to
d>2 qubits as explored previously in the spatial domain [39,40]. And since the frequency-bin
version leverages a single spatial mode in a bus waveguide, environmental fluctuations are shared
by all interfering bins, minimizing the need for active wavelength-level path stabilization and
automatically circumventing an inherent challenge of path-encoded DLCZ-type protocols.

Finally, the fact that DFT gates of increasing dimension are realizable without the addition of
more pulse shapers and EOMs makes our design of particular value with near-term technology.
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Admittedly, at our experimental value ∆ω/2π = 20 GHz, the d = 10 solution would require the
coherent combination of 9 RF tones up to a maximum frequency of 180 GHz—a questionable
prospect both in terms of microwave engineering and raw bandwidth. Yet although the minimum
spacing ∆ω is limited in our case by the resolution of the diffractive pulse shaper, much tighter
frequency spacings should be possible with integrated pulse shapers based on MRR add-drop
filters [41–43]. For example, at ∆ω/2π = 5 GHz, the maximum modulation frequency for a
10-point DFT drops to 45 GHz, sufficiently low that even direct digital synthesis of the total
waveform should be feasible. We therefore envision on-chip QFPs as the most promising route
for the high-dimensional frequency-bin mixers discovered here.
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